## HTWISH: RAPID HYBRID TESTING

- GUI based program originally written by Igor designed to test and analyze SVX3d hybrids
- Very convenient and fast: can create a database file with a large range of tests in less than 10 minutes
- My job has been to upgrade Htwish for SVX4 testing; it will be very useful in the coming months

### Outline of Discussion

- Introduction to the tests / current analysis results
- Discussion of how Htwish uses these results to automatically evaluate a hybrid
- Where we are now with the program, and where we're going

## Pipeline Pedestal Map

- Very fundamental; looks at the all the pedestal levels of pipeline capacitors on a hybrid (i.e. all channels and cells) while the chip is not digitizing/reading out
- Produces many raw data histograms which can be rapidly analyzed
- Results are used in a number of different ways for hybrid evaluation (more on this later...)







## Pipeline Gain Map

- Injects into all channels at both 0.5 and 0.7 volts
- Calculates gain in [ADC counts/V] for all pipeline capacitors
- Current drawback: calculates gain based on the nominal VCAL voltage, not what the chip actually "sees"





## Pipeline Delay

- With the L1A trigger in a fixed bucket, steps the trigger latency from 1-42, and reads out at every latency setting
- Designed to make sure that cell IDs read out are what we expect
- No histograms in case of success; if failure, a standard "Error Table Histogram" is produced

### Risetime

- Used to examine the behavior of the preamp at different bandwidth settings
- A little less useful for the SVX4 than the SVX3, due to the SVX4's greater preamp speed





### **ADC Limits**

- A test designed to insure that no bits are stuck in the ADC latch
- Digitize for different settings of counter modulo
- Make sure pedestal level is always exceeding counter modulo
- Methods by which this is achieved are different for our SVX4 version of Htwish

# Dynamic Common Mode Suppression

- Idea is to see how many channels on a chip need to be injected before chip is fooled into subtracting off the injected, rather than the pedestal, channels
- Test appears promising, but technical problems with reading out a heavily injected chip have been occurring





## Sparsification

- Check to make sure the chip can distinguish between pedestal and injected channels by removing "read-all" mode
- Test performed both with and without readneighbor feature
- Attenuated version of events read out poses some (minor) coding challenges

### Additionally...

- Multihit test: idea is to check for proper cell IDs in case of four closely spaced L1A triggers occur
- Serial line test: check to see if initialization bits are correctly read out on the priority-out line

### Getmap

- Much like the standalone program Marc and I have been using, but much quicker!
- Examines deadtimeless operation by stepping through the buckets during a readout sequence.
  Three flavors: regular, sparse mode, and Dynamic Common Mode Suppression
- Creation of test data works fine, but analysis code needs to be improved

## Htwish Analysis

- Htwish will apply the results of these tests to evaluate the hybrid
- Evaluation is based on cuts, which are currently undergoing an evolution to reflect the behavior of SVX4 hybrids
- Analysis is hierarchical, and presented as a "Quality Tree"



## Currently

- Htwish can properly produce test data. ASCII screen dumps indicate that this data is what we expect.
- Much analysis code can be improved: data integrity checks need to become more "intelligent", and cuts will also be improved as we learn more about our hybrids
- Nonetheless, it has already proved useful in evaluating LBL hybrids

#### Future

- Near term: problems just mentioned will be solved in the next week or so. Some of the testing may be streamlined
- Htwish will be very useful for rapid testing of the new SVX4 version
- Likewise in the long run, will be indispensable for testing ~1500 hybrids